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Problem Set 8

For the Exercise Session on Dec 17

Last name First name SCIPER Nr Points

Problem 1: Prediction and coding

After observing a binary sequence ug,...,u;, that contains ng(u’) zeros and n;(u’) ones, we are asked
to estimate the probability that the next observation, u;y; will be 0. One class of estimators are of the
form ,

ny(u') + «
no(u?) + ny(u?) + 2a°

no(u?) + a
no(u?) + nq(u?) + 2«

PUi+1|U¢(1|ui) =

We will consider the case a = 1/2, this is known as the Krichevsky-Trofimov estimator. Note that for
i =0 we get Py, (0) =Py, (1) =1/2.

Consider now the joint distribution P(u) on {0,1}" induced by this estimator,

p(u") = HPU,i‘Uiq(ui\ui_l).

i=1

(a) Show, by induction on n that, for any n and any u™ € {0,1}",

P(ul,...7un) > %(%)"0(%)n17

where ng = ng(u") and ny = ny(u").

[Hint: if 0 <m < n, then (14 1/n)"t1/2 > m"H}Q(l +1/m)™]

(b) Conclude that there is a prefix-free code C : U — {0,1}* such that
" 1
lengthC(uq,...,u,) < nhy (no(u)) + 3 logn + 2,
n

with he(z) = —zlogz — (1 — ) log(l — z).
(¢) Show that if Uy,...,U, are ii.d. Bernoulli, then

1 1 2
—E[lengthC(Uy,...,U,)] < H({Uy) + — logn + —
n 2n n

Solution 1. (a) For n =1, we have P(u1) = Py, (u;) = 1.0 uy =0, no(ur) =1 and ny(u1) = 0.

Hence, P(uy) = 1= 2\1/5(%)”0(%)”1 . Tt is easy to show that for u; = 1, the inequality still holds with

equality.



~ no ni
For n =k > 1, let’s assume that P(uy,...,ug) > ﬁ(%) (%) . For n =k + 1, it is sufficient to
check upy1 = 0, as the case u;41 = 1 is the same if we also exchange the roles of ng and n;. In this
case, no(uFT1) =ng(uF) +1 and ny () = ny(ub).

Plur,...,ur,0) = Py, ., o (O[uF) P (u®)
no(u¥) + % 1 (no(uk))"o(u’“) (nl(uk))nl(u’“)
~ no(uF) + ny(uF) + 12k k k
(k;+ 1)k+1/2 (no(uk) + %)no(uk)no(uk) 1 no(ukH) no(u
k:k+1/2 (no(uk) + 1>n0(uk)+1 2\/m kE+1

f(uk)

k+l)

n uk+l
m (N
kE+1

We need to show that f(u¥) > 1 for any u* € {0,1}*, but this follows from the hint. Therefore, we
proved that our induction hypothesis is true for any n = k 4+ 1, given the condition that n = k cases is
satisfied. By induction, we have for any integer n > 1

~ ]_ no no nl ni
Pl o2 () ()
(y “ )_2\/77 n n

Proof the hint: We need to show that:

(1) ™ e (1 )
k ~ no(uk) + 3 no(u®) ‘

g(no(uk))=g(no)

Now, consider the function g(x) = %(1 + 1)* for & > 1. Since we have that no(u”) <k, if g(x) is
2

an increasing function then we would have:

k+1 1

k+1 1
g(no(uk)) < g(k) = kil(l + E>k = —(1 + E)k+1/2
T2 (k+2)y/1+ 1
RETD), 1.,
= Y - 1 _ +1/2

1\ kH1/2
<1+ —
< *k) ’

and the result would follow (the last inequality is due to \/k(k+1) < /k(k+1)+1/4 =k+1/2) .

Hence, we just need to show that g(z) is an increasing function, é.e. that %g(w) > 0. A simple way
of doing this is by showing that Ing(x) is an increasing function, which would then imply the result for
g(z). If we compute the differentiation of Ing(x), we get

d 1 1 1 1 1
—1 = — 1+~ =ln(z+1) —Inz -
o (@) = —+ x+%+n<+x> 71 nle+l) - |

Now observe:
z+1 1 1
| 1)—Inx = —du=E |-
n(z+1)—Inz /I o du {U] ,

where U is a unifom random variable between z and x + 1. Also,

1 1

z+1/2  E[U]

Thus:

%lng(x) _E [H - ﬁ



and the positivity of d—dmln g(x) follows from the convexity of the function v — 1/u (and Jensen’s
inequality).

(b) Consider the code with length function L(u™) = [—log P(u™)]. We can check that such code satisfies
the Kraft Inequity.

ZQ—L(u") _ 22— [—log P(u™)] < ZP(U”) =1

Hence, there exists a prefix-free code with length function L(u™).

length C(uy, ..., un) = [—log P(u™)] < —log P(u™) + 1
1 no\ "™ /nqp\"™"
< gta ()" (2)")
- 0g(2\/ﬁ n n *
1
:QJrflognJrn{fﬂlog(@)fglogﬂ
2 n n n n

1 n
=2+ ilognJrnhg(;O)

(c) Let Pr(U; =0) =6, Vi €{1,...,n}. Since Uy, ...,U, areiid, wehave E[ng(u™)] = Y7 E[no(w;)] =
nf and H(U;) = he(0) for all 7.

Ellength C(Uy,...,U,)] < Elnhso(

1
)+§logn+2]

3

1
)]+ =logn +2

= nE[hg( n B

(IE

=)
S
IS
=

1
< nhy )+ 5 logn +2

n
1
= nho(0) + 5 logn + 2
1
=nH(U;) + 510gn+2
Therefore,
1 1 2
—E[lengthC(Un,...,U,)] < H(Uy) + — logn + —
n 2n n

Problem 2: Lower bound on Expected Length

Suppose U is a random variable taking values in {1,2,...}. Set L = |[log, U|. (L.e., L =j if and only
if 29 <U <2t j=0,1,2,....

(a) Show that H({U|L=3j)<j, j=0,1,....
(b) Show that H(U|L) < E[L].

)
)

(¢) Show that H(U) <E[L]+ H(L).

(d) Suppose that Pr(U = 1) > Pr(U =2) > ... . Show that 1 >iPr(U =1i).
)

(e) With U as in (d), and using the result of (d), show that E[log, U] < H(U) and conclude that
E[L] < H(U).

(f) Suppose that N is a random variable taking values in {0, 1,...} with distribution py and E[N] =
p. Let G be a geometric random variable with mean y, i.e., pg(n) = p™/(1+ p)t*", n > 0.



Show that H(G) — H(N) = D(py|lpg), and conclude that H(N) < g(u) with g(z) = (1 +
x)logy(1+ ) — xlogy .

[Hint: Let f(n,u) = —logypa(n) = (n+ 1)logy(1 + p) — nlogy(p) . First show that E[f(G, u)] =
E[f(N, u)], and consequently H(G) =", pn(n)log,(1/pa(n)).]

(g) Show that for U asin (d) and g(z) as in (f),

E[L] > H(U) — g(H(U)).

[Hint: combine (f), (e), (c).]

(h) Now suppose U is a random variable taking values on an alphabet U, and ¢ : U — {0,1}* is an

injective code. Show that
Ellength ¢(U)] > H(U) — g(H(U)).
[Hint: the best injective code will label U = {aj,as,as,...} so that Pr(U = a;) > Pr(U = ag) >

..., and assign the binary sequences A,0,1,00,01,10,11,... to the letters a1, as,... in that order.
Now observe that the 4’th binary sequence in the list A,0,1,00,01,... is of length |log, ] .]

Solution 2. (a) We know that if L = j then 2/ < U < 29! meaning that if L = j then U can take
at most 2771 — 2/ = 2J values. We also know that the entropy of a discrete random variable is at most
the logarithm of the number of possible values it assumes. Thus,

H(U|L = j) < log,(27) = j. (1)
(b) We have that:
H(U|L) :ZPL(j)H(U|L:j) (2)
< zj:pL(j)j (3)
- IEJ[L]. (4)
(¢c) We have that:
H({U)< H(UL) (5)
= H(L)+ H(U|L) (6)
< H(L) + E[L]. (7)

Where (7) follows from (b). Notice that Ineq. (5) is actually an equality, since L is a function of U (and
thus, H(L|U) = 0).
(d) For random variable U with Pr(U =1) > Pr(U =2) > ..., we have
i
1= "Pr(U=j) =Y Pr(U=j)>iPr(U=1i). (8)
J Jj=1

(e) From (d) we get that for a given 4, log,i < —log, Pr(U =+4). Thus:
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(f) It is easy to see that, for any integer valued random variable @:

E[£(Q,m)] =Y ((n+1)log(1+ p) — nlog u)pg(n)

n

=log(1+p) Y (n+1)po(n) —logu )  npq(n)

n

= log(1 + ) (E[Q] + 1) — log uE[Q]

Thus, since E[N] = E[G], we have that E[f(N, )] = E[f(G, p)].

This implies that H(G) = Y, pn(n)log(1/pc(n)) as H(G) = Eg[—log(pe)] = En[—log(pc)]-

puting the difference:

1 1
H(G) - H(N) = ;pzv(n) (10% pa(n) 1Ogm(m)
B o [ PN ()
*;pN( )1 g<pc(n))

To conclude:
H(N)=H(G) — D(pnllpe) < H(G) = (14 p)log(1 + p) — plog = g(p).
(9) Let us denote with p = E[L]. L takes values in {0,1,...} and from (f) we know that

H(L) < g(p).-

From (e) we have that
pw=E[L] < H(U).

Com-

(20)

(21)

As g(x) a non-decreasing function for x > 0 (the derivative is log,(1+ x) —logy(z) > 0 for x > 0), we

can see that

9(n) = g(E[L]) < g(H(U)).
To conclude, from (c¢) we have that:

E[L] > HU) - H(L)

> HU) - g(p)
> H(U) - g(H(U)).

(22)

(23)
(24)
(25)

(h) Consider the following random variable V' taking values in the alphabet V = {1,2,...} and such
that Pr(V =4) =Pr (U = a;) for every i = 1,2..., i.e. a bijective mapping from U to V . We have



that E[length ¢(U)] = E[|log, V'|]. Let us denote with L = [log, V| : this random variable will play the
same role played by L until now. We can say that:

Ellength ¢(U)] = E[L] (26)
> H(V)—g(H(V)) (27)
= H(U) —g(H(U)). (28)

Where (27) follows from (g) and (28) is true since V' is a bijective function of U and entropy is preserved
under bijective mappings.

Problem 3: Tighter Generalization Bound

[10pts] Let D = Xy, ..., X,, iid from an unknown distribution Px, let H be a hypothesis space, and
?:H x X — R be a 02— subgaussian loss function for every h. In the lecture we have seen that the
generalization error can be upper bounded using the mutual information.

2021(D; H)

|EPDH [LPX (H) - LD(H)] | < n

(i) Modify the proof of the Mutual Information Bound (11.2.2) to show that if for all h € H, £(h, X)

is 02— subgaussian in X , then

Epp s [LpX(H)_LD(H)]|<\/QJZZ?_ZI(X“H).

Hint: Recall from the lecture notes that

B (L (H) ~ Lo(H)]| < 3 (B, [6(H, X)) ~ Br s [00H, X))
i=1

Solution:

E Py, [Lpy (H) = Lp(H)] ||

IN

% > By, [6(H, X)) = Epy, py [((H, X5)]|

< % S Epy [[Epy . 00, X0) ~ Bry, [, X0)]] (1114)
=1

= %ZEPH [\/QUQD(PXi|H||PXi)] (11.12)

< %Z\/Q("QEF’H [D(Px,ullPx,)] (11.15)

Ly eeram (11.15)
i=1
- \/202 S I(X; H)

n

(ii) Show that, this new bound is never worse than the previous bound by showing that,

1D H) > 3 1(X H).
=1



Solution:

I(D:H) = I(Xy, ..., X H) = > I(X;; HIX'™) (chain rule for MI)
i=1

= Z I(X; HX (independence of X;’s)
i=1

> Z I(X;; H) (chain rule and non-negativity of MI)

i=1
Therefore the new upper bound is never larger than the previous upper bound.

(iii) Let us consider an example. Assume that D = X1,.., X,,, n > 1, are i.i.d. from N (6,1), and that
we do not know 6. We want to learn 6 assuming the loss ¢(h,z) = min(1, (h — z)?) (which is
bounded) and H = R. Our learning algorithm outputs H = %Z?:l X, . Use the new bound to
show that

|Eppy [Lpy (H) — Lp(H)]| < e

How does the old bound perform in this example?
Hint: Adding independent gaussian random variables, you get a gaussian random variable.
Solution: Note that the learning algorithm is a deterministic one, that is given a training set D,

the learning algorithm outputs a deterministic number. Note also that by property of Gaussian,
H ~ N(0,1/n). Therefore,
1 1 1
I(D;H)=h(H) — h(H|D) = 3 log(2me—) — 3 log(2me0) = oo (29)
n

which gives a vacuous bound. Let us compute I(X1; H) = h(H) — h(H|X1). Fix x1, Then,
JTRRETES oS (30)
R P '

which is Gaussian around some mean (which we do not care about) and with variance (n —1)/n?,
and note that the variance does not depend on x;. Therefore the mutual information can be
computed as,

1 1 1 n—1 1 n
I(X1;H) =h(H) — h(H|X;) = 5 log(ZWeE) - 510g(27re = )= B log(

) (31)

n—1

This is true for all I(X;; H). Also, this loss function is bounded between 0 — 1 therefore it is
1/4— subgaussian. We get the bound,

ey Ly () — Lo()] | < | 222 I ) [2ringlosGn)

= /o8- (33)




