Problem Set 8

For the Exercise Session on Dec 17

Last name	First name	SCIPER Nr	Points

Problem 1: Prediction and coding

After observing a binary sequence u_1, \ldots, u_i , that contains $n_0(u^i)$ zeros and $n_1(u^i)$ ones, we are asked to estimate the probability that the next observation, u_{i+1} will be 0. One class of estimators are of the form

$$\hat{P}_{U_{i+1}|U^i}(0|u^i) = \frac{n_0(u^i) + \alpha}{n_0(u^i) + n_1(u^i) + 2\alpha} \quad \hat{P}_{U_{i+1}|U^i}(1|u^i) = \frac{n_1(u^i) + \alpha}{n_0(u^i) + n_1(u^i) + 2\alpha}.$$

We will consider the case $\alpha = 1/2$, this is known as the Krichevsky–Trofimov estimator. Note that for i = 0 we get $\hat{P}_{U_1}(0) = \hat{P}_{U_1}(1) = 1/2$.

Consider now the joint distribution $\hat{P}(u^n)$ on $\{0,1\}^n$ induced by this estimator,

$$\hat{P}(u^n) = \prod_{i=1}^n \hat{P}_{U_i|U^{i-1}}(u_i|u^{i-1}).$$

(a) Show, by induction on n that, for any n and any $u^n \in \{0,1\}^n$,

$$\hat{P}(u_1, \dots, u_n) \ge \frac{1}{2\sqrt{n}} \left(\frac{n_0}{n}\right)^{n_0} \left(\frac{n_1}{n}\right)^{n_1},$$

where $n_0 = n_0(u^n)$ and $n_1 = n_1(u^n)$.

[Hint: if
$$0 \le m \le n$$
, then $(1+1/n)^{n+1/2} \ge \frac{m+1}{m+1/2} (1+1/m)^m$]

(b) Conclude that there is a prefix-free code $\mathcal{C}:\mathcal{U}\to\{0,1\}^*$ such that

length
$$C(u_1, \ldots, u_n) \le nh_2\left(\frac{n_0(u^n)}{n}\right) + \frac{1}{2}\log n + 2,$$

with
$$h_2(x) = -x \log x - (1-x) \log(1-x)$$
.

(c) Show that if U_1, \ldots, U_n are i.i.d. Bernoulli, then

$$\frac{1}{n}\mathbb{E}[\operatorname{length} \mathcal{C}(U_1, \dots, U_n)] \le H(U_1) + \frac{1}{2n}\log n + \frac{2}{n}$$

Solution 1. (a) For n=1, we have $\hat{P}(u_1)=\hat{P}_{U_1}(u_i)=\frac{1}{2}$. If $u_1=0$, $n_0(u_1)=1$ and $n_1(u_1)=0$. Hence, $\hat{P}(u_1)=\frac{1}{2}=\frac{1}{2\sqrt{n}}(\frac{n_0}{n})^{n_0}(\frac{n_1}{n})^{n_1}$. It is easy to show that for $u_1=1$, the inequality still holds with equality.

For $n=k\geq 1$, let's assume that $\hat{P}(u_1,\ldots,u_k)\geq \frac{1}{2\sqrt{k}}\left(\frac{n_0}{k}\right)^{n_0}\left(\frac{n_1}{k}\right)^{n_1}$. For n=k+1, it is sufficient to check $u_{k+1}=0$, as the case $u_{i+1}=1$ is the same if we also exchange the roles of n_0 and n_1 . In this case, $n_0(u^{k+1})=n_0(u^k)+1$ and $n_1(u^{k+1})=n_1(u^k)$.

$$\begin{split} \hat{P}(u_1,\ldots,u_k,0) &= \hat{P}_{U_{k+1}|U^k}(0|u^k)\hat{P}_{U^k}(u^k) \\ &\geq \frac{n_0(u^k) + \frac{1}{2}}{n_0(u^k) + n_1(u^k) + 1} \frac{1}{2\sqrt{k}} \left(\frac{n_0(u^k)}{k}\right)^{n_0(u^k)} \left(\frac{n_1(u^k)}{k}\right)^{n_1(u^k)} \\ &= \underbrace{\frac{(k+1)^{k+1/2}}{k^{k+1/2}} \frac{(n_0(u^k) + \frac{1}{2})n_0(u^k)^{n_0(u^k)}}{(n_0(u^k) + 1)^{n_0(u^k) + 1}}}_{f(u^k)} \frac{1}{2\sqrt{k+1}} \left(\frac{n_0(u^{k+1})}{k+1}\right)^{n_0(u^{k+1})} \left(\frac{n_1(u^{k+1})}{k+1}\right)^{n_1(u^{k+1})} \end{split}$$

We need to show that $f(u^k) \ge 1$ for any $u^k \in \{0,1\}^k$, but this follows from the hint. Therefore, we proved that our induction hypothesis is true for any n = k + 1, given the condition that n = k cases is satisfied. By induction, we have for any integer $n \ge 1$

$$\hat{P}(u_1, \dots, u_n) \ge \frac{1}{2\sqrt{n}} \left(\frac{n_0}{n}\right)^{n_0} \left(\frac{n_1}{n}\right)^{n_1},$$

Proof the hint: We need to show that:

$$\left(1 + \frac{1}{k}\right)^{k+1/2} \ge \underbrace{\frac{n_0(u^k) + 1}{n_0(u^k) + \frac{1}{2}} \left(1 + \frac{1}{n_0(u^k)}\right)^{n_0(u^k)}}_{q(n_0(u^k)) = q(n_0)}.$$

Now, consider the function $g(x) = \frac{x+1}{x+\frac{1}{2}}(1+\frac{1}{x})^x$ for $x \ge 1$. Since we have that $n_0(u^k) \le k$, if g(x) is an increasing function then we would have:

$$g(n_0(u^k)) \le g(k) = \frac{k+1}{k+\frac{1}{2}} (1+\frac{1}{k})^k = \frac{k+1}{(k+\frac{1}{2})\sqrt{1+\frac{1}{k}}} (1+\frac{1}{k})^{k+1/2}$$
$$= \frac{\sqrt{k(k+1)}}{k+\frac{1}{2}} (1+\frac{1}{k})^{k+1/2}$$
$$< \left(1+\frac{1}{k}\right)^{k+1/2},$$

and the result would follow (the last inequality is due to $\sqrt{k(k+1)} < \sqrt{k(k+1)+1/4} = k+1/2$). Hence, we just need to show that g(x) is an increasing function, i.e. that $\frac{d}{dx}g(x) \geq 0$. A simple way of doing this is by showing that $\ln g(x)$ is an increasing function, which would then imply the result for g(x). If we compute the differentiation of $\ln g(x)$, we get

$$\frac{d}{dx}\ln g(x) = \frac{1}{x+1} - \frac{1}{x+\frac{1}{2}} + \ln\left(1+\frac{1}{x}\right) - \frac{1}{x+1} = \ln(x+1) - \ln x - \frac{1}{x+\frac{1}{2}}$$

Now observe:

$$\ln(x+1) - \ln x = \int_{x}^{x+1} \frac{1}{u} du = \mathbb{E}\left[\frac{1}{U}\right],$$

where U is a uniform random variable between x and x+1. Also,

$$\frac{1}{x+1/2} = \frac{1}{\mathbb{E}[U]}.$$

Thus:

$$\frac{d}{dx} \ln g(x) = \mathbb{E}\left[\frac{1}{U}\right] - \frac{1}{\mathbb{E}[U]}$$

and the positivity of $\frac{d}{dx} \ln g(x)$ follows from the convexity of the function $u \to 1/u$ (and Jensen's inequality).

(b) Consider the code with length function $L(u^n) = \lceil -\log \hat{P}(u^n) \rceil$. We can check that such code satisfies the Kraft Inequity.

$$\sum_{u^n} 2^{-L(u^n)} = \sum_{u^n} 2^{-\lceil -\log \hat{P}(u^n) \rceil} \le \sum_{u^n} \hat{P}(u^n) = 1$$

Hence, there exists a prefix-free code with length function $L(u^n)$.

length
$$\mathcal{C}(u_1, \dots, u_n) = \lceil -\log \hat{P}(u^n) \rceil \le -\log \hat{P}(u^n) + 1$$

$$\le -\log \left(\frac{1}{2\sqrt{n}} \left(\frac{n_0}{n} \right)^{n_0} \left(\frac{n_1}{n} \right)^{n_1} \right) + 1$$

$$= 2 + \frac{1}{2} \log n + n \left[-\frac{n_0}{n} \log(\frac{n_0}{n}) - \frac{n_1}{n} \log \frac{n_1}{n} \right]$$

$$= 2 + \frac{1}{2} \log n + nh_2(\frac{n_0}{n})$$

(c) Let $\Pr(U_i = 0) = \theta$, $\forall i \in \{1, ..., n\}$. Since $U_1, ..., U_n$ are i.i.d, we have $\mathbb{E}[n_0(u^n)] = \sum_{i=1}^n \mathbb{E}[n_0(u_i)] = n\theta$ and $H(U_i) = h_2(\theta)$ for all i.

$$\mathbb{E}[\operatorname{length} \mathcal{C}(U_1, \dots, U_n)] \leq \mathbb{E}[nh_2(\frac{n_0(u^n)}{n}) + \frac{1}{2}\log n + 2]$$

$$= n\mathbb{E}[h_2(\frac{n_0(u^n)}{n})] + \frac{1}{2}\log n + 2$$

$$\leq nh_2(\frac{\mathbb{E}[n_0(u^n)]}{n}) + \frac{1}{2}\log n + 2$$

$$= nh_2(\theta) + \frac{1}{2}\log n + 2$$

$$= nH(U_1) + \frac{1}{2}\log n + 2$$

Therefore,

$$\frac{1}{n}\mathbb{E}[\operatorname{length} \mathcal{C}(U_1, \dots, U_n)] \le H(U_1) + \frac{1}{2n}\log n + \frac{2}{n}$$

Problem 2: Lower bound on Expected Length

Suppose U is a random variable taking values in $\{1,2,\ldots\}$. Set $L=\lfloor \log_2 U \rfloor$. (I.e., L=j if and only if $2^j \leq U < 2^{j+1}$; $j=0,1,2,\ldots$.

- (a) Show that $H(U|L=j) \leq j$, $j=0,1,\ldots$
- (b) Show that $H(U|L) \leq \mathbb{E}[L]$.
- (c) Show that $H(U) \leq \mathbb{E}[L] + H(L)$.
- (d) Suppose that $\Pr(U=1) \ge \Pr(U=2) \ge \dots$ Show that $1 \ge i \Pr(U=i)$.
- (e) With U as in (d), and using the result of (d), show that $\mathbb{E}[\log_2 U] \leq H(U)$ and conclude that $\mathbb{E}[L] \leq H(U)$.
- (f) Suppose that N is a random variable taking values in $\{0, 1, ...\}$ with distribution p_N and $\mathbb{E}[N] = \mu$. Let G be a geometric random variable with mean μ , i.e., $p_G(n) = \mu^n/(1+\mu)^{1+n}$, $n \ge 0$.

Show that $H(G) - H(N) = D(p_N || p_G)$, and conclude that $H(N) \leq g(\mu)$ with $g(x) = (1 + \mu)$ $x)\log_2(1+x) - x\log_2 x.$

[Hint: Let $f(n,\mu) = -\log_2 p_G(n) = (n+1)\log_2(1+\mu) - n\log_2(\mu)$. First show that $\mathbb{E}[f(G,\mu)] = (n+1)\log_2(1+\mu) - n\log_2(1+\mu) = (n+1)\log_2(1+\mu) - n\log_2(1+\mu)$ $\mathbb{E}[f(N,\mu)]$, and consequently $H(G) = \sum_{n} p_N(n) \log_2(1/p_G(n))$.

(g) Show that for U as in (d) and g(x) as in (f),

$$E[L] \ge H(U) - g(H(U)).$$

[Hint: combine (f), (e), (c).]

(h) Now suppose U is a random variable taking values on an alphabet \mathcal{U} , and $c:\mathcal{U}\to\{0,1\}^*$ is an injective code. Show that

$$E[\operatorname{length} c(U)] \ge H(U) - g(H(U)).$$

[Hint: the best injective code will label $\mathcal{U} = \{a_1, a_2, a_3, \dots\}$ so that $\Pr(U = a_1) \ge \Pr(U = a_2) \ge$..., and assign the binary sequences $\lambda, 0, 1, 00, 01, 10, 11, ...$ to the letters $a_1, a_2, ...$ in that order. Now observe that the i'th binary sequence in the list $\lambda, 0, 1, 00, 01, \ldots$ is of length $\lfloor \log_2 i \rfloor$.

Solution 2. (a) We know that if L=j then $2^{j} \leq U < 2^{j+1}$, meaning that if L=j then U can take at most $2^{j+1}-2^j=2^j$ values. We also know that the entropy of a discrete random variable is at most the logarithm of the number of possible values it assumes. Thus,

$$H(U|L=j) \le \log_2(2^j) = j. \tag{1}$$

(b) We have that:

$$H(U|L) = \sum_{j} p_L(j)H(U|L=j)$$

$$\leq \sum_{j} p_L(j)j$$
(3)

$$\leq \sum_{j} p_L(j)j \tag{3}$$

$$= \mathbb{E}[L]. \tag{4}$$

(c) We have that:

$$H(U) \le H(UL) \tag{5}$$

$$= H(L) + H(U|L) \tag{6}$$

$$\leq H(L) + \mathbb{E}[L]. \tag{7}$$

Where (7) follows from (b). Notice that Ineq. (5) is actually an equality, since L is a function of U (and thus, H(L|U) = 0).

(d) For random variable U with $Pr(U=1) \ge Pr(U=2) \ge \dots$, we have

$$1 = \sum_{j} \Pr(U = j) \ge \sum_{j=1}^{i} \Pr(U = j) \ge i \Pr(U = i).$$
 (8)

(e) From (d) we get that for a given i, $\log_2 i \le -\log_2 \Pr(U=i)$. Thus:

$$\mathbb{E}[\lfloor \log_2 U \rfloor] = \sum_{i} \Pr(U = i) \lfloor \log_2 i \rfloor \tag{9}$$

$$\leq \sum_{i} \Pr(U = i) \log_2 i \tag{10}$$

$$\leq -\sum_{i} \Pr(U=i) \log_2 \Pr(U=i) \tag{11}$$

$$=H(U) \tag{12}$$

(f) It is easy to see that, for any integer valued random variable Q:

$$\mathbb{E}[f(Q,\mu)] = \sum_{n} ((n+1)\log(1+\mu) - n\log\mu)p_Q(n)$$
(13)

$$= \log(1+\mu) \sum_{n} (n+1)p_Q(n) - \log \mu \sum_{n} np_Q(n)$$
 (14)

$$= \log(1+\mu)(\mathbb{E}[Q]+1) - \log \mu \mathbb{E}[Q] \tag{15}$$

Thus, since $\mathbb{E}[N] = \mathbb{E}[G]$, we have that $\mathbb{E}[f(N,\mu)] = \mathbb{E}[f(G,\mu)]$.

This implies that $H(G) = \sum_n p_N(n) \log(1/p_G(n))$ as $H(G) = \mathbb{E}_G[-\log(p_G)] = \mathbb{E}_N[-\log(p_G)]$. Computing the difference:

$$H(G) - H(N) = \sum_{n} p_N(n) \left(\log \frac{1}{p_G(n)} - \log \frac{1}{p_N(n)} \right)$$
 (16)

$$= \sum_{n} p_N(n) \log \left(\frac{p_N(n)}{p_G(n)} \right) \tag{17}$$

$$= D(p_N || p_G). \tag{18}$$

To conclude:

$$H(N) = H(G) - D(p_N || p_G) \le H(G) = (1 + \mu) \log(1 + \mu) - \mu \log \mu = g(\mu). \tag{19}$$

(g) Let us denote with $\mu = \mathbb{E}[L]$. L takes values in $\{0,1,\ldots\}$ and from (f) we know that

$$H(L) \le g(\mu). \tag{20}$$

From (e) we have that

$$\mu = \mathbb{E}[L] \le H(U). \tag{21}$$

As g(x) a non-decreasing function for x > 0 (the derivative is $\log_2(1+x) - \log_2(x) > 0$ for x > 0), we can see that

$$g(\mu) = g(\mathbb{E}[L]) \le g(H(U)). \tag{22}$$

To conclude, from (c) we have that:

$$\mathbb{E}[L] \ge H(U) - H(L) \tag{23}$$

$$\geq H(U) - g(\mu) \tag{24}$$

$$\geq H(U) - g(H(U)). \tag{25}$$

(h) Consider the following random variable V taking values in the alphabet $\mathcal{V}=\{1,2,\ldots\}$ and such that $\Pr(V=i)=\Pr(U=a_i)$ for every $i=1,2\ldots,$ i.e. a bijective mapping from U to V. We have

that $\mathbb{E}[\operatorname{length} c(U)] = \mathbb{E}[\lfloor \log_2 V \rfloor]$. Let us denote with $\hat{L} = \lfloor \log_2 V \rfloor$: this random variable will play the same role played by L until now. We can say that:

$$\mathbb{E}[\text{length } c(U)] = \mathbb{E}[\hat{L}] \tag{26}$$

$$\geq H(V) - g(H(V)) \tag{27}$$

$$=H(U)-g(H(U)). (28)$$

Where (27) follows from (g) and (28) is true since V is a bijective function of U and entropy is preserved under bijective mappings.

Problem 3: Tighter Generalization Bound

[10pts] Let $D = X_1, ..., X_n$ iid from an unknown distribution P_X , let \mathcal{H} be a hypothesis space, and $\ell : \mathcal{H} \times \mathcal{X} \to \mathbb{R}$ be a σ^2 -subgaussian loss function for every h. In the lecture we have seen that the generalization error can be upper bounded using the mutual information.

$$|\mathbb{E}_{P_{DH}}[L_{P_X}(H) - L_D(H)]| \le \sqrt{\frac{2\sigma^2 I(D; H)}{n}}$$

(i) Modify the proof of the Mutual Information Bound (11.2.2) to show that if for all $h \in \mathcal{H}$, $\ell(h, X)$ is σ^2 -subgaussian in X, then

$$|\mathbb{E}_{P_{DH}}[L_{P_X}(H) - L_D(H)]| \le \sqrt{\frac{2\sigma^2 \sum_{i=1}^n I(X_i; H)}{n}}.$$

Hint: Recall from the lecture notes that

$$|\mathbb{E}_{P_{DH}}[L_{P_X}(H) - L_D(H)]| \le \frac{1}{n} \sum_{i=1}^n |\mathbb{E}_{P_{X_iH}}[\ell(H, X_i)] - \mathbb{E}_{P_{X_iP_H}}[\ell(H, X_i)]|.$$

Solution:

$$||\mathbb{E}_{P_{DH}} [L_{P_{X}}(H) - L_{D}(H)]|| \leq \frac{1}{n} \sum_{i=1}^{n} |\mathbb{E}_{P_{X_{i}H}} [\ell(H, X_{i})] - \mathbb{E}_{P_{X_{i}}P_{H}} [\ell(H, X_{i})]|$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P_{H}} \left[\left| \mathbb{E}_{P_{X_{i}|H}} [\ell(H, X_{i})] - \mathbb{E}_{P_{X_{i}}} [\ell(H, X_{i})] \right| \right]$$
(11.14)

$$\leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{P_H} \left[\sqrt{2\sigma^2 D(P_{X_i|H}||P_{X_i})} \right]$$
 (11.12)

$$\leq \frac{1}{n} \sum_{i=1}^{n} \sqrt{2\sigma^2 \mathbb{E}_{P_H} \left[D(P_{X_i|H}||P_{X_i}) \right]}$$
 (11.15)

$$= \frac{1}{n} \sum_{i=1}^{n} \sqrt{2\sigma^2 I(X_i; H)}$$

$$\leq \sqrt{\frac{2\sigma^2 \sum_{i=1}^{n} I(X_i; H)}{n}}$$

$$(11.15)$$

(ii) Show that, this new bound is never worse than the previous bound by showing that,

$$I(D;H) \ge \sum_{i=1}^{n} I(X_i;H).$$

Solution:

$$I(D;H) = I(X_1, ..., X_n; H) = \sum_{i=1}^n I(X_i; H | X^{i-1})$$
 (chain rule for MI)

$$= \sum_{i=1}^n I(X_i; H X^{i-1})$$
 (independence of X_i 's)

$$\geq \sum_{i=1}^n I(X_i; H)$$
 (chain rule and non-negativity of MI)

Therefore the new upper bound is never larger than the previous upper bound.

(iii) Let us consider an example. Assume that $D = X_1, ..., X_n, n > 1$, are i.i.d. from $\mathcal{N}(\theta, 1)$, and that we do not know θ . We want to learn θ assuming the loss $\ell(h, x) = \min(1, (h - x)^2)$ (which is bounded) and $\mathcal{H} = \mathbb{R}$. Our learning algorithm outputs $H = \frac{1}{n} \sum_{i=1}^{n} X_i$. Use the new bound to show that

$$|\mathbb{E}_{P_{DH}}[L_{P_X}(H) - L_D(H)]| \le \sqrt{\frac{1}{4(n-1)}}.$$

How does the old bound perform in this example?

Hint: Adding independent gaussian random variables, you get a gaussian random variable.

Solution: Note that the learning algorithm is a deterministic one, that is given a training set D,

the learning algorithm outputs a deterministic number. Note also that by property of Gaussian, $H \sim \mathcal{N}(\theta, 1/n)$. Therefore,

$$I(D;H) = h(H) - h(H|D) = \frac{1}{2}\log(2\pi e^{\frac{1}{n}}) - \frac{1}{2}\log(2\pi e^{0}) = \infty$$
 (29)

which gives a vacuous bound. Let us compute $I(X_1; H) = h(H) - h(H|X_1)$. Fix x_1 , Then,

$$H = \frac{1}{n}x_1 + \frac{1}{n}\sum_{i=2}^{n} X_i \tag{30}$$

which is Gaussian around some mean (which we do not care about) and with variance $(n-1)/n^2$, and note that the variance does not depend on x_1 . Therefore the mutual information can be computed as,

$$I(X_1; H) = h(H) - h(H|X_1) = \frac{1}{2}\log(2\pi e^{\frac{1}{n}}) - \frac{1}{2}\log(2\pi e^{\frac{n-1}{n^2}}) = \frac{1}{2}\log(\frac{n}{n-1})$$
(31)

This is true for all $I(X_i; H)$. Also, this loss function is bounded between 0-1 therefore it is 1/4-subgaussian. We get the bound,

$$|\mathbb{E}_{P_{DH}}[L_{P_X}(H) - L_D(H)]| \le \sqrt{\frac{2\sigma^2 \sum_{i=1}^n I(X_i; H)}{n}} = \sqrt{\frac{2\sigma^2 n \frac{1}{2} \log(\frac{n}{n-1})}{n}}$$
 (32)

$$=\sqrt{\frac{1}{4}\log(\frac{n}{n-1})}\tag{33}$$

$$= \sqrt{\frac{1}{4}\log(1 + \frac{1}{n-1})} \tag{34}$$

$$\leq \sqrt{\frac{1}{4} \frac{1}{n-1}} \tag{35}$$